Department of Mechanical Engineering

PVP 19

Engineering Mathematics – II (ODE, PDE and Multivariable Calculus)

Engineering viathematics in (ODE) i DE and viathvariable Calculus)									
Course Code	19BS1201	Year	I	Semester	II				
Course Category	Basic Sciences	Branch	ME	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	Calculus&Algebra				
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100				

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	solve the differential equations related to various engineering fields.						
CO2	Solve the linear differential equation with constant coefficients.						
CO3	identify solution methods for partial differential equations that model physical						
	processes.						
CO4	interpret the physical meaning of gradient, curl and divergence.						
CO5	determine the work done against a force field, circulation and flux using vector						
	calculus.						

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											1	
CO2	3	2											1	
CO3	3	2											1	
CO4	3	2											1	
CO5	3	2											1	

	Syllabus				
Unit No.					
I	Linear Differential Equations of Higher Order: Definitions, complete solution, operator D, rules for finding complimentary function, inverse operator, rules for finding particular integral, method of variation of parameters.				
II	Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients, Applications: Mass spring system and L-C-R				
	Circuit problems.				
Ш	Partial Differential Equations: First order partial differential equations, solutions of first order linear PDEs, Charpit's method, solutions to homogenous and non-homogenous linear partial differential equations.	СОЗ			
IV	Multivariable Calculus (Vector Differentiation): Scalar and vector point functions, vector operator del, del applies to scalar point functions- Gradient, del applied to vector point functions-Divergence and Curl, vector	CO4			
	identities				

Department of Mechanical Engineering

PVP 19

Wultivariable Calculus (Vector Integration): Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof).

CO5

Learning Resources

Text Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Books

- 1 R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.

e- Resources & other digital material

www.nptelvideos.com/mathematics/

https://nptel.ac.in/courses/111104025/

https://nptel.ac.in/courses/122101003/